Commercially pure aluminum is a white lustrous metal which stands second in the scale of malleability, sixth in ductility, and ranks high in its resistance to corrosion. Aluminum combined with various percentages of other metals forms alloys which are used in aircraft construction.

Aluminum alloys in which the principal alloying ingredients are manganese, chromium, or magnesium and silicon show little attack in corrosive environments. Alloys in which substantial percentages of copper are used are more susceptible to corrosive action. The total percentage of alloying elements is seldom more than 6 or 7 percent in the wrought alloys.

Aluminum is one of the most widely used metals in modern aircraft construction. It is vital to the aviation industry because of its high strength to weight ratio and its comparative ease of fabrication. The outstanding characteristic of aluminum is its light weight. Aluminum melts at the comparatively low temperature of 1,250 °F. It is nonmagnetic and is an excellent conductor. Commercially pure aluminum has a tensile strength of about 13,000 psi, but its strength may be approximately doubled by rolling or other cold working processes. By alloying with other metals, or by using heat-treating processes, the tensile strength may be raised to as high as 65,000 psi or to within the strength range of structural steel.

Aluminum alloys, although strong, are easily worked because they are malleable and ductile. They may be rolled into sheets as thin as 0.0017 inch or drawn into wire 0.004 inch in diameter. Most aluminum alloy sheet stock used in aircraft construction range from 0.016 to 0.096 inch in thickness; however, some of the larger aircraft use sheet stock which may be as thick as 0.356 inch.

The various types of aluminum may be divided into two general classes:

(1) Casting alloys (those suitable for casting in sand, permanent mold, or die castings)

(2) Wrought alloys (those which may be shaped by rolling, drawing, or forging).

Of these two, the wrought alloys are the most widely used in aircraft construction, being used for stringers, bulkheads, skin, rivets, and extruded sections.

Aluminum casting alloys are divided into two basic groups. In one, the physical properties of the alloys are determined by the alloying elements and cannot be changed after the metal is cast. In the other, the alloying elements make it possible to heat treat the casting to produce the desired physical properties.

The casting alloys are identified by a letter preceding the alloy number. When a letter precedes a number, it indicates a slight variation in the composition of the original alloy. This variation in composition is simply to impart some desirable quality. In casting alloy 214, for example, the addition of zinc to improve its pouring qualities is indicated by the letter A in front of the number, thus creating the designation A214.

When castings have been heat treated, the heat treatment and the composition of the casting is indicated by the letter T, followed by an alloying number. An example of this is the sand casting alloy 355, which has several different compositions and tempers and is designated by 355-T6, 355-T51, or C355-T51.

Aluminum alloy castings are produced by one of three basic methods:

(1) Sand mold,

(2) Permanent mold

(3) Die cast.

In casting aluminum, it must be remembered that in most cases different types of alloys must be used for different types of castings. Sand castings and die castings require different types of alloys than those used in permanent molds.

Sand and permanent mold castings are parts produced by pouring molten metal into a previously prepared mold, allowing the metal to solidify or freeze, and then removing the part. If the mold is made of sand, the part is a sand casting; if it is a metallic mold (usually cast iron) the part is a permanent mold casting. Sand and permanent castings are produced by pouring liquid metal into the mold, the metal flowing under the force of gravity alone.

The two principal types of sand casting alloys are 112 and 212. Little difference exists between the two metals from a mechanical properties standpoint, since both are adaptable to a wide range of products.

The permanent mold process is a later development of the sand casting process, the major difference being in the material from which the molds are made. The advantage of this process is that there are fewer openings (called porosity) than in sand castings. The sand and the binder, which is mixed with the sand to hold it together, give off a certain amount of gas which causes porosity in a sand casting.

Permanent mold castings are used to obtain higher mechanical properties, better surfaces, or more accurate dimensions. There are two specific types of permanent mold castings:

(1) Permanent metal mold with metal cores

(2) Semi-permanent types containing sand cores.

Because finer grain structure is produced in alloys subjected to the rapid cooling of metal molds, they are far superior to the sand type castings. Alloys 122, A132, and 142 are commonly used in permanent mold castings, the principal uses of which are in internal combustion engines.

Die castings used in aircraft are usually aluminum or magnesium alloy. If weight is of primary importance, magnesium alloy is used because it is lighter than aluminum alloy. However, aluminum alloy is frequently used because it is stronger than most magnesium alloys.

A die casting is produced by forcing molten metal under pressure into a metallic die and allowing it to solidify; then the die is opened and the part removed. The basic difference between permanent mold casting and die casting is that in the permanent mold process the metal flows into the die under gravity. In the die casting operation, the metal is forced under great pressure. Die castings are used where relatively large production of a given part is involved. Remember, any shape which can be forged can be cast.

Wrought aluminum and wrought aluminum alloys are divided into two general classes: non-heat-treatable alloys and heat-treatable alloys.

Non-heat-treatable alloys are those in which the mechanical properties are determined by the amount of cold work introduced after the final annealing operation. The mechanical properties obtained by cold working are destroyed by any subsequent heating and cannot be restored except by additional cold working, which is not always possible. The “full hard” temper is produced by the maximum amount of cold work that is commercially practicable. Metal in the “as fabricated” condition is produced from the ingot without any subsequent controlled amount of cold working or thermal treatment. There is, consequently, a variable amount of strain hardening, depending upon the thickness of the section.

For heat-treatable aluminum alloys, the mechanical properties are obtained by heat treating to a suitable temperature, holding at that temperature long enough to allow the alloying constituent to enter into solid solution, and then quenching to hold the constituent in solution. The metal is left in a supersaturated, unstable state and is then age hardened either by natural aging at room temperature or by artificial aging at some elevated temperature.

Magnesium and Magnesium Alloys

Magnesium, the world’s lightest structural metal, is a silvery white material weighing only two-thirds as much as aluminum. Magnesium does not possess sufficient strength in its pure state for structural uses, but when alloyed with zinc, aluminum, and manganese it produces an alloy having the highest strength to weight ratio of any of the commonly used metals.

Magnesium is probably more widely distributed in nature than any other metal. It can be obtained from such ores as dolomite and magnesite, and from sea water, underground brines, and waste solutions of potash. With about 10 million pounds of magnesium in 1 cubic mile of sea water, there is no danger of a dwindling supply.

Some of today’s aircraft require in excess of one-half ton of this metal for use in hundreds of vital spots. Some wing panels are fabricated entirely from magnesium alloys, weigh 18 percent less than standard aluminum panels, and have flown hundreds of satisfactory hours. Among the aircraft parts that have been made from magnesium with a substantial savings in weight are nose wheel doors, flap cover skin, aileron cover skin, oil tanks, floorings, fuselage parts, wingtips, engine nacelles, instrument panels, radio masts, hydraulic fluid tanks, oxygen bottle cases, ducts, and seats. Magnesium alloys possess good casting characteristics. Their properties compare favorably with those of cast aluminum. In forging, hydraulic presses are ordinarily used, although, under certain conditions, forging can be accomplished in mechanical presses or with drop hammers.

Magnesium alloys are subject to such treatments as annealing, quenching, solution heat treatment, aging, and stabilizing. Sheet and plate magnesium are annealed at the rolling mill. The solution heat treatment is used to put as much of the alloying ingredients as possible into solid solution, which results in high tensile strength and maximum ductility. Aging is applied to castings following heat treatment where maximum hardness and yield strength are desired.

Magnesium embodies fire hazards of an unpredictable nature. When in large sections, its high thermal conductivity makes it difficult to ignite and prevents it from burning. It will not burn until the melting point of 1,204 °F is reached. However, magnesium dust and fine chips are ignited easily. Precautions must be taken to avoid this if possible. Should a fire occur, it can be extinguished with an extinguishing powder, such as soapstone or graphite. Water or any standard liquid or foam fire extinguisher cause magnesium to burn more rapidly and can cause explosions.

Magnesium alloys produced in the United States consist of magnesium alloyed with varying proportions of aluminum, manganese, and zinc. These alloys are designated by a letter of the alphabet, with the number 1 indicating high purity and maximum corrosion resistance. Many of the magnesium alloys manufactured in the United States are produced by the Dow Chemical Company and have been given the trade name of Dowmetal alloys. To distinguish between these alloys, each is assigned a letter. Thus, we have Dowmetal J, Dowmetal M, and so forth.

Another manufacturer of magnesium alloys is the American Magnesium Corporation, a subsidiary of the Aluminum Company of America. This company uses an identification system similar to that used for aluminum alloys, with the exception that magnesium alloy numbers are preceded with the letters AM. Thus, AM240C is a cast alloy, and AM240C4 is the same alloy in the heat-treated state. AM3S0 is an annealed wrought alloy, and AM3SRT is the same alloy rolled after heat treatment.

Titanium and Titanium Alloys

Titanium was discovered by an English priest named Gregot. A crude separation of titanium ore was accomplished in 1825. In 1906 a sufficient amount of pure titanium was isolated in metallic form to permit a study. Following this study, in 1932, an extraction process was developed which became the first commercial method for producing titanium. The United States Bureau of Mines began making titanium sponge in 1946, and 4 years later the melting process began.

The use of titanium is widespread. It is used in many commercial enterprises and is in constant demand for such items as pumps, screens, and other tools and fixtures where corrosion attack is prevalent. In aircraft construction and repair, titanium is used for fuselage skins, engine shrouds, firewalls, longerons, frames, fittings, air ducts, and fasteners.

Titanium is used for making compressor disks, spacer rings, compressor blades and vanes, through bolts, turbine housings and liners, and miscellaneous hardware for turbine engines.

Titanium, in appearance, is similar to stainless steel. One quick method used to identify titanium is the spark test. Titanium gives off a brilliant white trace ending in a brilliant white burst. Also, identification can be accomplished by moistening the titanium and using it to draw a line on a piece of glass. This will leave a dark line similar in appearance to a pencil mark. Titanium falls between aluminum and stainless steel in terms of elasticity, density, and elevated temperature strength. It has a melting point of from 2,730 °F to 3,155 °F, low thermal conductivity, and a low coefficient of expansion. It is light, strong, and resistant to stress corrosion cracking. Titanium is approximately 60 percent heavier than aluminum and about 50 percent lighter than stainless steel.

Because of the high melting point of titanium, high temperature properties are disappointing. The ultimate yield strength of titanium drops rapidly above 800 °F. The absorption of oxygen and nitrogen from the air at temperatures above 1,000 °F makes the metal so brittle on long exposure that it soon becomes worthless. However, titanium does have some merit for short time exposure up to 3,000 °F where strength is not important. Aircraft firewalls demand this requirement.

Titanium is nonmagnetic and has an electrical resistance comparable to that of stainless steel. Some of the base alloys of titanium are quite hard. Heat treating and alloying do not develop the hardness of titanium to the high levels of some of the heat-treated alloys of steel. It was only recently that a heat-treatable titanium alloy was developed. Prior to the development of this alloy, heating and rolling was the only method of forming that could be accomplished. However, it is possible to form the new alloy in the soft condition and heat treats it for hardness.

Iron, molybdenum, and chromium are used to stabilize titanium and produce alloys that will quench harden and age harden. The addition of these metals also adds ductility. The fatigue resistance of titanium is greater than that of aluminum or steel.

Titanium becomes softer as the degree of purity is increased. It is not practical to distinguish between the various grades of commercially pure or unalloyed titanium by chemical analysis; therefore, the grades are determined by mechanical properties.

Titanium Designations

The A-B-C classification of titanium alloys was established to provide a convenient and simple means of describing all titanium alloys. Titanium and titanium alloys possess three basic types of crystals: A (alpha), B (beta), and C (combined alpha and beta). Their characteristics are:

A (alpha) -all around performance; good weldability; tough and strong both cold and hot, and resistant to oxidation.

B (beta)-bendability; excellent bend ductility; strong both cold and hot, but vulnerable to contamination.

C (combined alpha and beta for compromise performances) – strong when cold and warm, but weak when hot; good bendability; moderate contamination resistance; excellent forgeability.

Titanium is manufactured for commercial use in two basic compositions: commercially pure titanium and alloyed titanium. A-55 is an example of commercially pure titanium. It has yield strength of 55,000 to 80,000 psi and is a general purpose grade for moderate to severe forming. It is sometimes used for nonstructural aircraft parts and for all types of corrosion resistant applications, such as tubing. Type A-70 titanium is closely related to type A-55 but has yield strength of 70,000 to 95,000 psi. It is used where higher strength is required, and it is specified for many moderately stressed aircraft parts. For many corrosion applications, it is used interchangeably with type A-55. Both type A-55 and type A-70 are weldable.

One of the widely used titanium base alloys is designated as C-110M. It is used for primary structural members and aircraft skin, has 110,000 psi minimum yield strength, and contains 8 percent manganese. Type A-110AT is a titanium alloy which contains 5 percent aluminum and 2.5 percent tin. It also has high minimum yield strength at elevated temperatures with the excellent welding characteristics inherent in alpha-type titanium alloys.

Corrosion Characteristics

The corrosion resistance of titanium deserves special mention. The resistance of the metal to corrosion is caused by the formation of a protective surface film of stable oxide or chemi-absorbed oxygen. Film is often produced by the presence of oxygen and oxidizing agents.

Corrosion of titanium is uniform. There is little evidence of pitting or other serious forms of localized attack. Normally, it is not subject to stress corrosion, corrosion fatigue, intergranular corrosion, or galvanic corrosion. Its corrosion resistance is equal or superior to 18-8 stainless steel.

Laboratory tests with acid and saline solutions show titanium polarizes readily. The net effect, in general, is to decrease current flow in galvanic and corrosion cells. Corrosion currents on the surface of titanium and metallic couples are naturally restricted. This partly accounts for good resistance to many chemicals; also, the material may be used with some dissimilar metals with no harmful galvanic effect on either.

Copper and Copper Alloys

Copper is one of the most widely distributed metals. It is the only reddish colored metal and is second only to silver in electrical conductivity. Its use as a structural material is limited because of its great weight. However, some of its outstanding characteristics, such as its high electrical and heat conductivity, in many cases overbalance the weight factor.

Because it is very malleable and ductile, copper is ideal for making wire. It is corroded by salt water but is not affected by fresh water. The ultimate tensile strength of copper varies greatly. Fore cast copper, the tensile strength is about 25,000 psi, and when cold rolled or cold drawn its tensile strength increases to a range of 40,000 to 67,000 psi.

In aircraft, copper is used primarily in the electrical system for bus bars, bonding, and as lockwire.

Beryllium copper is one of the most successful of all the copper base alloys. It is a recently developed alloy containing about 97 percent copper, 2 percent beryllium, and sufficient nickel to increase the percentage of elongation. The most valuable feature of this metal is that the physical properties can be greatly stepped up by heat treatment, the tensile strength rising from 70,000 psi in the annealed state to 200,000 psi in the heat-treated state. The resistance of beryllium copper to fatigue and wear makes it suitable for diaphragms, precision bearings and bushings, ball cages, and spring washers.

Brass is a copper alloy containing zinc and small amounts of aluminum, iron, lead, manganese, magnesium, nickel, phosphorous, and tin. Brass with a zinc content of 30 to 35 percent is very ductile, but that containing 45 percent has relatively high strength.

Muntz metal is a brass composed of 60 percent copper and 40 percent zinc. It has excellent corrosion resistant qualities in salt water. Its strength can be increased by heat treatment. As cast, this metal has an ultimate tensile strength of 50,000 psi, and it can be elongated 18 percent. It is used in making bolts and nuts, as well as parts that come in contact with salt water.

Red brass, sometimes termed “bronze” because of its tin content, is used in fuel and oil line fittings. This metal has good casting and finishing properties and machines freely.

Bronzes are copper alloys containing tin. The true bronzes have up to 25 percent tin, but those with less than 11 percent are most useful, especially for such items as tube fittings in aircraft.

Among the copper alloys are the copper aluminum alloys, of which the aluminum bronzes rank very high in aircraft usage. They would find greater usefulness in structures if it were not for their strength to weight ratio as compared with alloy steels. Wrought aluminum bronzes are almost as strong and ductile as medium carbon steel, and they possess a high degree of resistance to corrosion by air, salt water, and chemicals. They are readily forged, hot or cold rolled, and many react to heat treatment.

These copper base alloys contain up to 16 percent of aluminum (usually 5 to 11 percent), to which other metals, such as iron, nickel, or manganese, may be added. Aluminum bronzes have good tearing qualities, great strength, hardness, and resistance to both shock and fatigue. Because of these properties, they are used for diaphragms, gears, and pumps. Aluminum bronzes are available in rods, bars, plates, sheets, strips, and forgings.

Cast aluminum bronzes, using about 89 percent copper, 9 percent aluminum, and 2 percent of other elements, have high strength combined with ductility, and are resistant to corrosion, shock, and fatigue. Because of these properties, cast aluminum bronze is used in bearings and pump parts. These alloys are useful in areas exposed to salt water and corrosive gases.

Manganese bronze is an exceptionally high strength, tough, corrosion resistant copper zinc alloy containing aluminum, manganese, iron and, occasionally, nickel or tin. This metal can be formed, extruded, drawn, or rolled to any desired shape. In rod form, it is generally used for machined parts, for aircraft landing gears and brackets.

Silicon bronze is a more recent development composed of about 95 percent copper, 3 percent silicon, and 2 percent manganese, zinc, iron, tin, and aluminum. Although not a bronze in the true sense because of its small tin content, silicon bronze has high strength and great corrosion resistance.


Monel, the leading high nickel alloy, combines the properties of high strength and excellent corrosion resistance. This metal consists of 68 percent nickel, 29 percent copper, 0.2 percent iron, 1 percent manganese, and 1.8 percent of other elements. It cannot be hardened by heat treatment.

Monel, adaptable to casting and hot or cold working, can be successfully welded. It has working properties similar to those of steel. When forged and annealed, it has a tensile strength of 80,000 psi. This can be increased by cold working to 125,000 psi, sufficient for classification among the tough alloys.

Monel has been successfully used for gears and chains to operate retractable landing gears, and for structural parts subject to corrosion. In aircraft, Monel is used for parts demanding both strength and high resistance to corrosion, such as exhaust manifolds and carburetor needle valves and sleeves.


K-Monel is a nonferrous alloy containing mainly nickel, copper, and aluminum. It is produced by adding a small amount of aluminum to the Monel formula. It is corrosion resistant and capable of being hardened by heat treatment.

K-Monel has been successfully used for gears, and structural members in aircraft which are subjected to corrosive attacks. This alloy is nonmagnetic at all temperatures. K-Monel sheet has been successfully welded by both oxyacetylene and electric arc welding.

Nickel and Nickel Alloys

There is basically two nickel alloys used in aircraft. They are Monel and Inconel. Monel contains about 68 percent nickel and 29 percent copper, plus small amounts of iron and manganese. Nickel alloys can be welded or easily machined. Some of the nickel Monel, especially the nickel Monels containing small amounts of aluminum, are heat-treatable to similar tensile strengths of steel. Nickel Monel is used in gears and parts that require high strength and toughness, such as exhaust systems that require high strength and corrosion resistance at elevated temperatures.

Inconel alloys of nickel produce a high strength, high temperature alloy containing approximately 80 percent nickel, 14 percent chromium, and small amounts of iron and other elements. The nickel Inconel alloys are frequently used in turbine engines because of their ability to maintain their strength and corrosion resistance under extremely high temperature conditions.

Inconel and stainless steel are similar in appearance and are frequently found in the same areas of the engine. Sometimes it is important to identify the difference between the metal samples. A common test is to apply one drop of cupric chloride and hydrochloric acid solution to the unknown metal and allow it to remain for 2 minutes. At the end of the soak period, a shiny spot indicates the material is nickel Inconel, and a copper colored spot indicates stainless steel.

Substitution of Aircraft Metals

In selecting substitute metals for the repair and maintenance of aircraft, it is very important to check the appropriate structural repair manual. Aircraft manufacturers design structural members to meet a specific load requirement for a particular aircraft. The methods of repairing these members, apparently similar in construction, will thus vary with different aircraft.

Four requirements must be kept in mind when selecting substitute metals. The first and most important of these is maintaining the original strength of the structure. The other three are:

(1) maintaining contour or aerodynamic smoothness

(2) maintaining original weight, if possible, or keeping added weight to a minimum

(3) maintaining the original corrosion resistant properties of the metal.

Metalworking Processes

There are three methods of metalworking:

(1) hot working

(2) cold working

(3) extruding.

The method used will depend on the metal involved and the part required, although in some instances both hot and cold working methods may be used to make a single part.

Hot Working

Almost all steel is hot worked from the ingot into some form from which it is either hot or cold worked to the finished shape. When an ingot is stripped from its mold, its surface is solid, but the interior is still molten. The ingot is then placed in a soaking pit which retards loss of heat, and the molten interior gradually solidifies. After soaking, the temperature is equalized throughout the ingot, then it is reduced to intermediate size by rolling, making it more readily handled.

The rolled shape is called a bloom when its section dimensions are 6 inches × 6 inches or larger and approximately square. The section is called a billet when it is approximately square and less than 6 inches × 6 inches. Rectangular sections which have a width greater than twice their thickness are called slabs. The slab is the intermediate shape from which sheets are rolled.

Blooms, billets, or slabs are heated above the critical range and rolled into a variety of shapes of uniform cross section. Common rolled shapes are sheet, bar, channel, angle, and I-beam. As discussed later in this chapter, hot rolled material is frequently finished by cold rolling or drawing to obtain accurate finish dimensions and a bright, smooth surface.

Complicated sections which cannot be rolled, or sections of which only a small quantity is required, are usually forged. Forging of steel is a mechanical working at temperatures above the critical range to shape the metal as desired. Forging is done either by pressing or hammering the heated steel until the desired shape is obtained.

Pressing is used when the parts to be forged are large and heavy; this process also replaces hammering where high grade steel is required. Since a press is slow acting, its force is uniformly transmitted to the center of the section, thus affecting the interior grain structure as well as the exterior to give the best possible structure throughout.

Hammering can be used only on relatively small pieces. Since hammering transmits its force almost instantly, its effect is limited to a small depth. Thus, it is necessary to use a very heavy hammer or to subject the part to repeated blows to ensure complete working of the section. If the force applied is too weak to reach the center, the finished forged surface will be concave. If the center was properly worked, the surface will be convex or bulged. The advantage of hammering is that the operator has control over both the amount of pressure applied and the finishing temperature, and is able to produce small parts of the highest grade. This type of forging is usually referred to as smith forging. It is used extensively where only a small number of parts are needed. Considerable machining time and material are saved when a part is smith forged to approximately the finished shape.

Steel is often harder than necessary and too brittle for most practical uses when put under severe internal strain. To relieve such strain and reduce brittleness, it is tempered after being hardened. This consists of heating the steel in a furnace to a specified temperature and then cooling it in air, oil, water, or a special solution. Temper condition refers to the condition of metal or metal alloys with respect to hardness or toughness. Rolling, hammering, or bending these alloys, or heat treating and aging them, causes them to become tougher and harder. At times these alloys become too hard for forming and have to be re-heat treated or annealed.

Metals are annealed to relieve internal stresses, soften the metal, make it more ductile, and refine the grain structure. Annealing consists of heating the metal to a prescribed temperature, holding it there for a specified length of time, and then cooling the metal back to room temperature. To produce maximum softness, the metal must be cooled very slowly. Some metals must be furnace cooled; others may be cooled in air.

Normalizing applies to iron base metals only. Normalizing consists of heating the part to the proper temperature, holding it at that temperature until it is uniformly heated, and then cooling it in still air. Normalizing is used to relieve stresses in metals.

Strength, weight, and reliability are three factors which determine the requirements to be met by any material used in airframe construction and repair. Airframes must be strong and yet as light weight as possible. There are very definite limits to which increases in strength can be accompanied by increases in weight. An airframe so heavy that it could not support a few hundred pounds of additional weight would be of little use.

All metals, in addition to having a good strength/weight ratio, must be thoroughly reliable, thus minimizing the possibility of dangerous and unexpected failures. In addition to these general properties, the material selected for a definite application must possess specific qualities suitable for the purpose.

The material must possess the strength required by the dimensions, weight, and use. The five basic stresses which metals may be required to withstand are tension, compression, shear, bending, and torsion. The tensile strength of a material is its resistance to a force which tends to pull it apart. Tensile strength is measured in pounds per square inch (psi) and is calculated by dividing the load in pounds required to pull the material apart by its cross-sectional area in square inches.

The compression strength of a material is its resistance to a crushing force which is the opposite of tensile strength. Compression strength is also measured in psi. When a piece of metal is cut, the material is subjected, as it comes in contact with the cutting edge, to a force known as shear. Shear is the tendency on the part of parallel members to slide in opposite directions. It is like placing a cord or thread between the blades of a pair of scissors (shears). The shear strength is the shear force in psi at which a material fails. It is the load divided by the shear area.

Bending can be described as the deflection or curving of a member due to forces acting upon it. The bending strength of material is the resistance it offers to deflecting forces. Torsion is a twisting force. Such action would occur in a member fixed at one end and twisted at the other. The torsional strength of material is its resistance to twisting.

The relationship between the strength of a material and its weight per cubic inch, expressed as a ratio, is known as the strength/weight ratio. This ratio forms the basis for comparing the desirability of various materials for use in airframe construction and repair. Neither strength nor weight alone can be used as a means of true comparison. In some applications, such as the skin of monocoque structures, thickness is more important than strength, and, in this instance, the material with the lightest weight for a given thickness or gauge is best. Thickness or bulk is necessary to prevent bucking or damage caused by careless handling.

Corrosion is the eating away or pitting of the surface or the internal structure of metals. Because of the thin sections and the safety factors used in aircraft design and construction, it would be dangerous to select a material possessing poor corrosion resistant characteristics.

Another significant factor to consider in maintenance and repair is the ability of a material to be formed, bent, or machined to required shapes. The hardening of metals by cold working or forming is termed work hardening. If a piece of metal is formed (shaped or bent) while cold, it is said to be cold worked. Practically all the work an aviation mechanic does on metal is cold work. While this is convenient, it causes the metal to become harder and more brittle.

If the metal is cold worked too much, that is, if it is bent back and forth or hammered at the same place too often, it will crack or break. Usually, the more malleable and ductile a metal is, the more cold working it can stand. Any process which involves controlled heating and cooling of metals to develop certain desirable characteristics (such as hardness, softness, ductility, tensile strength, or refined grain structure) is called heat treatment or heat treating. With steels the term “heat treating” has a broad meaning and includes such processes as annealing, normalizing, hardening, and tempering.

In the heat treatment of aluminum alloys, only two processes are included:

(1) the hardening and toughening process

(2) the softening process.

The hardening and toughening process is called heat treating, and the softening process is called annealing.

Aircraft metals are subjected to both shock and fatigue (vibrational) stresses. Fatigue occurs in materials which are exposed to frequent reversals of loading or repeatedly applied loads, if the fatigue limit is reached or exceeded. Repeated vibration or bending will ultimately cause a minute crack to occur at the weakest point. As vibration or bending continues, the crack lengthens until the part completely fails. This is termed shock and fatigue failure. Resistance to this condition is known as shock and fatigue resistance. It is essential that materials used for critical parts be resistant to these stresses.

Heat treatment is a series of operations involving the heating and cooling of metals in the solid state. Its purpose is to change a mechanical property or combination of mechanical properties so that the metal will be more useful, serviceable, and safe for a definite purpose. By heat treating, a metal can be made harder, stronger, and more resistant to impact. Heat treating can also make a metal softer and more ductile. No one heat treating operation can produce all of these characteristics. In fact, some properties are often improved at the expense of others. In being hardened, for example, a metal may become brittle.

The various heat-treating processes are similar in that they all involve the heating and cooling of metals. They differ, however, in the temperatures to which the metal is heated, the rate at which it is cooled, and, of course, in the final result.

The most common forms of heat treatment for ferrous metals are hardening, tempering, normalizing, annealing, and casehardening. Most nonferrous metals can be annealed and many of them can be hardened by heat treatment. However, there is only one nonferrous metal, titanium, that can be casehardened, and none can be tempered or normalized.


The temperature of the furnace must be held constant during the soaking period, since it is during this period that rearrangement of the internal structure of the steel takes place. Soaking temperatures for various types of steel are specified in ranges varying as much as 100 °F. [Figure 5-6] Small parts are soaked in the lower part of the specified range and heavy parts in the upper part of the specified range. The length of the soaking period depends upon the type of steel and the size of the part. Naturally, heavier parts require longer soaking to ensure equal heating throughout. As a general rule, a soaking period of 30 minutes to 1 hour is sufficient for the average heat-treating operation.


The rate of cooling through the critical range determines the form that the steel will retain. Various rates of cooling are used to produce the desired results. Still air is a slow cooling medium, but is much faster than furnace cooling. Liquids are the fastest cooling media and are therefore used in hardening steels.

There are three commonly used quenching liquids— brine, water, and oil. Brine is the strongest quenching medium, water is next, and oil is the least. Generally, an oil quench is used for alloy steels, and brine or water for carbon steels.

Quenching Media

Quenching solutions act only through their ability to cool the steel. They have no beneficial chemical action on the quenched steel and in themselves impart no unusual properties. Most requirements for quenching media are met satisfactorily by water or aqueous solutions of inorganic salts, such as table salt or caustic soda, or by some type of oil. The rate of cooling is relatively rapid during quenching in brine, somewhat less rapid in water, and slow in oil.


Brine usually is made of a 5 to 10 percent solution of salt (sodium chloride) in water. In addition to its greater cooling speed, brine has the ability to “throw” the scale from steel during quenching. The cooling ability of both water and brine, particularly water, is considerably affected by their temperature. Both should be kept cold—well below 60 °F. If the volume of steel being quenched tends to raise the temperature of the bath appreciably, add ice or use some means of refrigeration to cool the quenching bath.

There are many specially prepared quenching oils on the market; their cooling rates do not vary widely. A straight mineral oil with a Saybolt viscosity of about 100 at 100 °F is generally used. Unlike brine and water, the oils have the greatest cooling velocity at a slightly elevated temperature—about 100–140 °F—because of their decreased viscosity at these temperatures. When steel is quenched, the liquid in immediate contact with the hot surface vaporizes; this vapor reduces the rate of heat abstraction markedly. Vigorous agitation of the steel or the use of a pressure spray quench is necessary to dislodge these vapor films and thus permit the desired rate of cooling.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s