We start this chapter with a discussion of view factors and the rules associated with them. View factor expressions and charts for some common configurations are given, and the crossed-strings method is presented. We then discuss radiation heat transfer, first between black surfaces and then between nonblack surfaces using the radiation network approach. We continue with radiation shields and discuss the radiation effect on temperature measurements and comfort. Finally, we consider gas radiation, and discuss the effective emissivity’s and absorptivity’s of gas bodies of various shapes. We also discuss radiation exchange between the walls of combustion chambers and the high-temperature emitting and absorbing combustion gases inside.


Radiation heat transfer between surfaces depends on the orientation of the surfaces relative to each other as well as their radiation properties and temperatures, as illustrated in Figure 12–1. For example, a camper will make the most use of a campfire on a cold night by standing as close to the fire as possible and by blocking as much of the radiation coming from the fire by turning her front to the fire instead of her side. Likewise, a person will maximize the amount of solar radiation incident on him and take a sunbath by lying down on his back instead of standing up on his feet. To account for the effects of orientation on radiation heat transfer between two surfaces, we define a new parameter called the view factor, which is a purely geometric quantity and is independent of the surface properties and temperature. It is also called the shape factor, configuration factor, and angle factor. The view factor based on the assumption that the surfaces are diffuse emitters and diffuse reflectors is called the diffuse view factor, and the view factor based on the assumption that the surfaces are diffuse emitters but specular reflectors is called the specular view factor. In this book, we will consider radiation exchange between diffuse surfaces only, and thus the term view factor will simply mean diffuse view factor.



clip_image006clip_image008clip_image010clip_image012clip_image014clip_image016clip_image018clip_image020clip_image022clip_image024   factors in Table 12–1 are for three-dimensional geometries. The view factors in Table 12–2, on the other hand, are for geometries that are infinitely long in the direction perpendicular to the plane of the paper and are therefore two-dimensional. clip_image026clip_image028


So far, we have considered the nature of radiation, the radiation properties of materials, and the view factors, and we are now in a position to consider the rate of heat transfer between surfaces by radiation. The analysis of radiation exchange between surfaces, in general, is complicated because of reflection: a radiation beam leaving a surface may be reflected several times, with partial reflection occurring at each surface, before it is completely absorbed. The analysis is simplified greatly when the surfaces involved can be approximate blackbodies because of the absence of reflection. In this section, we consider radiation exchange between black surfaces only; we will extend the analysis to reflecting surfaces in the next section.


Again a negative value for Q indicates that net radiation heat transfer is to surface i (i.e., surface i gains radiation energy instead of losing). Also, the net heat transfer from a surface to itself is zero, regardless of the shape of the surface.


The analysis of radiation transfer in enclosures consisting of black surfaces is relatively easy, as we have seen above, but most enclosures encountered in practice involve nonblack surfaces, which allow multiple reflections to occur. Radiation analysis of such enclosures becomes very complicated unless some simplifying assumptions are made. To make a simple radiation analysis possible, it is common to assume the surfaces of an enclosure to be opaque, diffuse, and gray. That is, the surfaces are non-transparent, they are diffuse emitters and diffuse reflectors, and their radiation properties are independent of wavelength. Also, each surface of the enclosure is isothermal, and both the incoming and outgoing radiation are uniform over each surface.


Surfaces emit radiation as well as reflect it, and thus the radiation leaving a surface consists of emitted and reflected parts. The calculation of radiation heat transfer between surfaces involves the total radiation energy streaming away from a surface, with no regard for its origin. The total radiation energy leaving a surface per unit time and per unit area is the radiosity and is denoted by J.



Net Radiation Heat Transfer to or from a Surface

During a radiation interaction, a surface loses energy by emitting radiation and gains energy by absorbing radiation emitted by other surfaces. A surface experiences a net gain or a net loss of energy, depending on which quantity is larger. The net rate of radiation heat transfer from a surface i of surface area Ai is denoted by Qi and is expressed asclip_image038clip_image040






Radiation heat transfer between two surfaces can be reduced greatly by inserting a thin, high-reflectivity (low-emissivity) sheet of material between the two surfaces. Such highly reflective thin plates or shells are called radiation shields. Multilayer radiation shields constructed of about 20 sheets per cm thickness separated by evacuated space are commonly used in cryogenic and space applications. Radiation shields are also used in temperature measurements of fluids to reduce the error caused by the radiation effect when the temperature sensor is exposed to surfaces that are much hotter or colder than the fluid itself. The role of the radiation shield is to reduce the rate of radiation heat transfer by placing additional resistances in the path of radiation heat flow. The lower the emissivity of the shield, the higher the resistance.




Where the terms in the second set of parentheses in the denominator represent the additional resistance to radiation introduced by the shield. The appearance of the equation above suggests that parallel plates involving multiple radiation shields can be handled by adding a group of terms like those in the second set of parentheses to the denominator for each radiation shield. Then the radiation heat transfer through large parallel plates separated by N radiation shields becomes,




Radiation Effect on Temperature Measurements

A temperature measuring device indicates the temperature of its sensor, which is supposed to be, but is not necessarily, the temperature of the medium that the sensor is in. When a thermometer (or any other temperature measuring device such as a thermocouple) is placed in a medium, heat transfer takes place between the sensor of the thermometer and the medium by convection until the sensor reaches the temperature of the medium. But when the sensor is surrounded by surfaces that are at a different temperature than the fluid, radiation exchange will take place between the sensor and the surrounding surfaces.

When the heat transfers by convection and radiation balance each other, the sensor will indicate a temperature that falls between the fluid and surface temperatures. Below we develop a procedure to account for the radiation effect and to determine the actual fluid temperature. Consider a thermometer that is used to measure the temperature of a fluid flowing through a large channel whose walls are at a lower temperature than the fluid (Fig. 12–31). Equilibrium will be established and the reading of the thermometer will stabilize when heat gain by convection, as measured by the sensor, equals heat loss by radiation (or vice versa). That is, on a unit area basis,


The last term in Eq. 12–46 is due to the radiation effect and represents the radiation correction. Note that the radiation correction term is most significant when the convection heat transfer coefficient is small and the emissivity of the surface of the sensor is large. Therefore, the sensor should be coated with a material of high reflectivity (low emissivity) to reduce the radiation effect.

Placing the sensor in a radiation shield without interfering with the fluid flow also reduces the radiation effect. The sensors of temperature measurement devices used outdoors must be protected from direct sunlight since the radiation effect in that case is sure to reach unacceptable levels.

The radiation effect is also a significant factor in human comfort in heating and air-conditioning applications. A person who feels fine in a room at a specified temperature may feel chilly in another room at the same temperature as a result of the radiation effect if the walls of the second room are at a considerably lower temperature. For example, most people will feel comfortable in a room at 22°C if the walls of the room are also roughly at that temperature.

When the wall temperature drops to 5°C for some reason, the interior temperature of the room must be raised to at least 27°C to maintain the same level of comfort. Therefore, well-insulated buildings conserve energy not only by reducing the heat loss or heat gain, but also by allowing the thermostats to be set at a lower temperature in winter and at a higher temperature in summer without compromising the comfort level.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s